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A simple model for the forces acting on a single fiber as it is withdrawn from a tangled fiber assembly is
proposed. Particular emphasis is placed on understanding the dynamics of the reptating fiber with respect to the
entanglement of fibers within the tuft. The resulting two-parameter model captures the qualitative features of
experimental simulation. The model is extended to describe the breakup of a tuft. The results show good
agreement with experiment and indicate where a tuft is most likely to fracture based on the density of fiber
endpoints.
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I. MOTIVATION

There has been considerable interest in understanding the
physical properties of media that are partly composed of fi-
bers or nematic objects; examples are fiber suspensions
�1–3�, fiber reinforced composites �4,5�, polymers �6�, and
liquid crystals �7�. For textile fibers within dense tufts, their
relative orientations within an assembly and the number of
frictional contact points govern the internal forces of the tuft.
In compression and for small deformations in extension the
bending of individual fibers allows the whole assembly to
distort without significant slippage between fibers and an an-
isotropic elastic model can be used �8�. However under
higher extensional loads, the fibers must slip over each other
causing an irreversible deformation and it is this type of dis-
tortion that we are concerned with here. Modelling these
interactions, in particular aggregate or bulk behavior, is not
well understood but there has been some recent work. For
example, Refs. �9,10� present models for extensional defor-
mation that are based on planar constrained fiber mechanics
and Refs. �11,12� consider fiber withdrawal from an ad hoc
point of view. More recently Wilkins �13� studied the dynam-
ics of fiber slippage under small cyclic loads. A different
approach was taken in Ref. �14�, which derives a three-
dimensional �3D� phenomenological continuum model that
includes density, alignment, order, and entanglement as de-
pendent variables.

The original aim of this work was to understand and
quantify the forces acting inside a tuft of fibers as it is pro-
cessed by the carding machine, but the theory developed
here applies to any mass of long tangled fibers which are
subject to extensional forces. As a tuft goes through the card-
ing machine it is subjected to a series of forces aimed at
teasing, separating and aligning the fibers so that an ordered
lap is obtained. Typically a tuft is torn apart either under
tension or under shearing forces, and the forces resisting the
deformation of the tuft will be those acting between neigh-
boring fibers in the tuft; see Ref. �15� for a recent experimen-
tal study.

In order to aid the creation of a model for the deforming
tuft a series of experiments were set up in order to elucidate

the dependence of the forces on the parameters of the prob-
lem. The experimental work was conducted by Mahmoudi at
the Centre for Technical Textiles, University of Leeds, and
some of this work has been presented in Ref. �16�. In the first
experiment, a single fiber was removed at constant speed
from a clamped tuft and the tension in the fiber was recorded
as shown in Fig. 1. The graph illustrates the results of a large
number of experiments which have been normalized to allow
for variation in the size of the initial tuft. In a second experi-
ment a tuft was clamped at both ends which were then pulled
apart with constant speed and the force experienced was re-
corded as shown in Fig. 2. Again, this experiment was per-
formed many times and repeated for a number of different
fiber types and tuft sizes.

In the first part of this paper we model the first experiment
by assuming that the tuft is a fixed uniform structure from
which a single fiber is withdrawn. We propose two different
friction laws, first a friction which just depends on the num-
ber of contact points between the fibers which might be true
for rough fibers such as wool. Second we assume that the
friction depends linearly on the velocity difference between
the fibers at a contact point. Both these laws are simpler than
the one proposed by Ref. �8� and we are thus able to present
relatively simple solutions while still capturing the essential
dynamics. Comparison with experiments allows us to deter-
mine the crucial parameters in each case and to assess the

FIG. 1. Experimental results of a single fiber being withdrawn
from a tuft at 50 mm/min; polyester fibers 1.5 dtex.
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value of the model. The second part of the paper uses the
results for a single fiber to make a model for the breakup of
a tuft. These results are compared with those of the second
experiment, in Fig. 2, and conclusions about the two models
are drawn.

II. MODELLING PRELIMINARIES

We first consider a singe fiber which is withdrawn at con-
stant speed U from a fixed tuft. The tuft is assumed to consist
of randomly oriented fibers with a uniform volume fraction
and we suppose that initially the moving fiber is loosely
entangled within the tuft. The fiber will be crimped but we
assume that it is inextensible. As the fiber is withdrawn, the
part of the fiber outside the tuft will straighten, and the rest
of the fiber will come into frictional contact with fibers in the
tuft. As the fiber moves out of the tuft it will come into active
contact with more and more of the tuft fibers until the whole
fiber is in motion. During this part of the motion the tension
in the fiber will increase as more frictional contact points are
activated. Thereafter, as the fiber continues to move out of
the tuft, the number of contact points will decrease, and so
will the tension, until the fiber is completely withdrawn from
the tuft. Throughout we assume the motion of the other fibers
within the tuft is negligible.

A. Effective length of the fiber

The effective length of a fiber is defined as the length over
which the friction forces act. As described above this will
first increase and then decrease and the process is illustrated
schematically in Fig. 3. Here the black dots represent the
fixed fibers within the tuft and we can see how the length of

moving fiber which is in contact with these neighboring fi-
bers increases as the moving fiber is withdrawn from the tuft.
Once contact has been made, the moving fiber will be re-
stricted to moving along the unshaded path, the shortest
withdrawal trajectory, in a way that is analogous to reptation
in polymers, see Ref. �6�. The motion of the fiber is thus
constrained by the topological properties of the tuft. For
highly tangled, dense textile tufts, we assume that the neigh-
boring points of the tuft array are stationary, and that the
stresses and forces induced by the motion of the single fiber
do not affect the structure of the tuft. A similar idea has been
used by Ref. �13� to model the withdrawal of a fiber from an
assembly to describe “pilling” in knitted and woven materi-
als.

The effective length of the fiber that lies along the un-
shaded path in Fig. 3 will increase at a rate which depends on
the “state of entanglement” of the tuft. This state of entangle-
ment needs to take account of two different properties of the
fiber mass; the first of these is the “slackness” of a fiber
within the tuft and the second is the “tortuosity” of the final
fiber path around the fixed fibers in the tuft. These ideas have
also been discussed by Hearle and Wilkens �17� who propose
a diffusion model to take account of both effects.

In our simple model we measure the initial slackness S as
the ratio of the fiber length to the shortest withdrawal trajec-
tory as shown in Fig. 3. Once the fiber is in motion under
tension, the displacement of the fiber will converge onto the
shortest withdrawal trajectory. The rate at which the fiber
slackness between contact points is reduced will determine
the rate at which the effective length increases since it is not
until the slackness between initial contact points is elimi-
nated that further contact points can be engaged. To see the
connection between these two rates, we consider a fiber
which is moving with speed U through a fixed fiber structure.
If the average distance apart between contact points on any
particular fiber is d and the slackness parameter is S then we
can assume that between two adjacent contact points there is
initially a loop of fiber of length Sd. Thus the fiber must
travel a distance Sd-d in order to pick up a new contact point
and this will take time �S−1�d /U. In the same time the ef-
fective length will increase by d and so the last contact point
�P in Fig. 3� will move with speed U / �S−1� through the tuft
in a direction opposite to U. Thus the contact point will
travel along the fiber with speed −U�1+1/ �S−1��=−�U,
where �=S / �S−1�. The parameter � is always greater than
unity and an alternative way to define � is to note that if the
fiber is of length L then, ignoring elasticity, L /� is the length
of the fiber that has been withdrawn at the time when the far
end of the fiber first starts to move. We assume that � is the
same constant for all the experiments considered here; if we
are considering a tuft of fibers just before it enters the card-
ing machine, this assumption is reasonable for a given ma-
terial but it is not so reasonable to assume that � will not
vary from one material to another.

To parametrize the “tortuosity” of a fiber, we just count
the number of contact points per unit length, �, along the
shortest withdrawal trajectory. Clearly the frictional forces
per unit length on a fiber will be directly proportional to �
but it will also depend on the angle that the moving fiber
turns through at each contact point. This has been modelled

FIG. 2. Graphs of the tuft breaking force experiment for cotton
with variable elongation velocities; cotton fibers.

FIG. 3. Schematic illustration of a fiber being removed from a
tuft. The unshaded line indicates the shortest trajectory for the fi-
ber’s withdrawal when constrained by neighboring fibers repre-
sented here by dots.
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using the Capstan effect, see Ref. �17�, but in this paper these
effects are all contained within the average frictional force

per unit length f̂ . We also assume that the tuft is isotropic
throughout this paper.

B. Fiber-fiber interactions

The forces acting on the moving fiber are the frictional
forces due to fiber-fiber interactions. Since the tension is zero
at the free end of the fiber, Capstan theory which is based on
Coulomb friction predicts zero tension throughout the fiber.
So we will consider two different friction laws:

�1� A constant friction law which assumes that the fric-
tion at each moving contact point is a given constant, which
has also been used by Wilkins �13�.

�2� A dynamic friction law which assumes that the fric-
tion generated between two fibers is proportional to the rela-
tive velocity of the fibers.

These forces act over the effective length and are propor-
tional to the number of contact points per unit length.

C. Elastic effects

Although the fibers are virtually inextensible the crimp in
a fiber has an effect similar to elasticity. It can be shown
�18�, that the extension of a crimped fiber depends on its
tension as shown in Fig. 4. The value of T1 where the exten-
sion has reached 95% of the final extension is O�EIad−2�
where EI is the bending stiffness of the fibers, a is the am-
plitude of the crimp and d is the mean wavelength. The
breaking tension of the fiber, T2, is usually large compared to
T1.

The maximum tension experienced in the experimental
work �Figs. 1 and 2� is also large compared to T1 so it can be
assumed that the elastic effect of crimping is only important
at the very beginning of the fiber withdrawal experiment.

III. FIBER WITHDRAWAL PROBLEM

To derive the equations of motion of the fiber we use

Lagrangian variables so that the ends of the fiber are at �̂

=0 and �̂=�. As shown schematically in Fig. 5, the fiber has
three sections.

�1� 0��̂��̂1�t�: the fiber is loosely entangled within the
tuft and is at rest.

�2� �̂1�t���̂��̂2�t�: the fiber is moving in contact with
stationary fibers within the tuft.

�3� �̂2�t���̂��: the fiber has been withdrawn from the
tuft.

The actual position of a point of the moving fiber is y��̂ , t�
where y is measured from the point 0 where the fiber leaves
the tuft and is measured along the line of the taut part of the
fiber within the tuft. Thus

y��,t� = Ut, y��̂2,t� = 0, and
d�̂1

dt
= − �

�y

�t
��̂1,t� . �1�

From a simple force balance on an element ��̂ of a fiber

under tension T̂��̂�, the equation of motion of the moving
fiber is

�
�2y

�t2 =
�T̂

��̂
− f̂

�y

��̂
, �2�

where f̂ is the mean force per unit length opposing the mo-
tion of the fiber and � is the density per unit length of the

fiber in the unextended state. The term y / �̂ in �2� is the local
extension ratio between the deformed element �y and the

same, undeformed element of fiber ��̂. The elasticity law is

�y

��̂
= 1 + 	� T̂

Ts
� , �3�

where 	 is the modulus sketched in Fig. 4 and Ts is a typical

value of the tension. In region 3, f̂ =0 but in region 2, the

force f̂ will be the mean friction per unit length described in
Sec. II B.

We nondimensionalize the variables by writing

y = �Y, t =
�

U

, T̂ = TsT, f̂ =

Ts

�
f ,

�̂i = ��i and �̂ = �� , �4�

where Ts is still to be chosen. It turns out that in all cases the
parameter �U2 /Ts is small and so henceforth we neglect the
left-hand side of Eq. �2�. Thus we need to solve the quasi-
static model which, in nondimensional terms, is

FIG. 4. Extension plotted against tension for a crimped fiber.
FIG. 5. A schematic illustration of a fiber as it is withdrawn

from a tuft.
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�T

��
= f

�Y

��
,

�Y

��
= 1 + 	�T� . �5�

Solving these equations �5� with boundary conditions from
�1�, in region 3 where f =0 we find that

T = F�
� and Y = �1 + 	�F���� − 1� + 
 , �6�

where �1+	�F����2−1�+
=0. The boundary conditions for
region 2 will therefore be

T = F�
� and Y = 0 at � = �2, �7�

and

T = 0,
d�1

d

= − �

�Y

�

at � = �1, �8�

where the second boundary condition �8� holds as long as
�1�0 but is replaced by

T = 0 at � = 0 �9�

once �1 has reached zero and the whole fiber is in motion. In
addition, we need to add the initial conditions

�1�0� = 1, �2�0� = 1. �10�

For the moment, we ignore the elastic effects by taking
	�T�=0 and the problem can then be solved analytically. It
is easy to see that

Y = � − �2, �2 = 1 − 
, �1 = 1 − �
 �11�

for 0�
�1/�. To determine F�
�, we need to look at the
two possible friction laws separately.

A. Constant friction law

In this case we can choose Ts= f̂ l so that f =1 and then

F = �
�� − 1� if 0 � 
 �
1

�
,

1 − 
 if
1

�
� 
 � 1,� �12�

as illustrated in Fig. 6. Even with this simple friction law, the
model �12� captures the essential qualitative features exhib-
ited in the experimental results shown in Fig. 1.

B. Dynamic friction law

If the friction is linearly dependent on the relative velocity
of the fibers, then

f̂ = �
�y

�t
, �13�

where � is constant. Nondimensionalizing gives

f =
�Y

�

, �14�

if we choose Ts=U�� and so, when 	=0, f =1 again and the
result �12� still holds.

C. Experimental results

The experimental results shown in Fig. 1 were obtained
by a series of experiments in which a single polyester fiber
was removed at constant speed U=50 mm min−1 from a
clamped tuft. In each case the force was measured as a func-
tion of distance travelled and the results were drawn on a
single graph. Since polyester fiber was used it is reasonable
to assume that all fibers have approximately the same length
of 40 mm. Comparing these results with the theoretical
model allows us to estimate the maximum value of the ap-
plied force, Ts�1−1/��, and the time, L / �U��, or distance,
L /�, at which this maximum occurs. This information is
sufficient to determine Ts and � but does not enable us to
distinguish between the two friction laws proposed. The val-
ues given are �=2 and Ts=0.33 g ms−2. Note that the param-
eter �U2 /Ts=O�10−13� thus justifying our neglect of inertia
in Eq. �5�.

D. Numerical results

If 	 varies with T̂ as shown in Fig. 4, then it is necessary
to resort to numerical methods. The two free boundaries at
�=�1 and �=�2 make this a nontrivial exercise; however as
long as T1
Ts, the effect will only be to slightly extend the
time spent increasing F and to round off the discontinuous
slopes in Fig. 6 and so we have not performed extensive
numerical simulations. The case of the velocity-dependent
friction law with 	�T�=�T and 1/�=0 has been calculated
and the results are shown in Fig. 7, for a range of values of
�. The dotted lines are asymptotic solutions for small � ob-
tained by matching a regular perturbation for 
=O�1� with a

FIG. 6. An illustration for the force given in �12� for the with-
drawal of a fiber from a tuft; �=3.

FIG. 7. The withdrawal force on a single fiber: dotted lines plot
asymptotic solutions and the solid lines plot the numerical compu-
tations with �=0.01,0.02,0.03,0.04,0.05 in ascending order for
both sets of results and �=�.
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boundary layer of size O��� at 
=0, see Ref. �19�. Note that
the effects of elasticity are not significant until �→1 and
that the withdrawal force is monotonically decreasing except
for a short initial time period of O��� when �
1.

IV. A FIBER BETWEEN TWO TUFTS

Now that the simple experiment has been modelled and
yielded the crucial parameters � and Ts, we can start to build
up a model for tuft breakage. We start by analyzing the case
in which two tufts, connected by a single fiber, are pulled
apart at a constant speed U. As before, the assumption is that
the tufts are undisturbed by the passage of the fiber and we
will ignore the elasticity of the fiber and take 	=0 through-
out.

The setup soon after the start of the motion is illustrated
schematically in Fig. 8. We assume that initially a length ��
of the fiber is within the fixed left-hand tuft and the rest of
the fiber, of length �1−���, is initially within the right-hand
tuft which moves with constant speed U for t�0. The fiber
now has five sections which need to be considered sepa-
rately. We define �1 ,�2 ,�3 ,�4 as shown in Fig. 8 so that at
t=0, �1=�2=�3=�4=�. Using the same nondimensionaliza-
tion as in Sec. III, we then get the following solution. For
�2����3, there will be no friction force acting and so

T = F�
� and Y = � − �2, where �3 − �2 = 
 . �15�

For the portions of the fiber which are moving relative to the
tufts, �1����2 and �3����4, we will need to consider the
two friction laws separately and this time we find that the
results differ in the two cases.

A. Constant friction law

In the fixed tuft, with f =1, Eqs. �5�, �7�, and �8� lead to

F�
� = 	�2 − �1 if �1 � 0,

�2 if �1 = 0,

 �16�

where

�1 − � = ���2 − �� when �1 � 0. �17�

In the moving tuft where �3����4 the force f̂ will act in the
opposite direction so that �5�, �7�, and �8� are replaced by

�T

��
= − 1, T = F�
�, Y = 
 at � = �3 �18�

and if �4�1,

T = 0,
d�4

d

= ��1 −

�Y

�

� at � = �4, �19�

until �4=1, then

T = 0 at � = 1. �20�

Hence, using �15�, we get

F�
� = 	�4 − �3 if �4 � 1,

1 − �3 if �4 = 1,

 �21�

where

�4 − � = ���3 − �� . �22�

In the first instance �1�0 and �4�1 and Eqs. �15�–�17�,
�21�, and �22�, lead to

�1 = � −
�


2
, �2 = � −




2
, �3 = � +




2
,

�4 = � +
�


2
and F�
� = �� − 1�




2
. �23�

Without loss of generality, we can assume 0���
1
2 and so

�1 will become zero before �4=1 and this will happen when

= 2�

� . Thereafter we need to use F�
�=�2 for 0����2 until
either �4 reaches the value of 1 or �2=0.

However with this simple function law we must remem-
ber that it is also possible for the taut part of the fiber to be
stationary in a tuft as long as �f ��1. Since the length of taut
fiber, �4−�3, in the moving tuft cannot decrease until �4=1
and the length of the fiber in the fixed tuft can only decrease
once �1=0, the only way to balance the forces on the fiber is
by keeping �3 and �4 fixed while the fiber is extracted from
the fixed tuft. Hence, for 
�

2�
� ,

�1 = 0, �2 = ��1 +
1

�
� − 
, �3 = ��1 +

1

�
� ,

�4 = 2� and F = ��1 +
1

�
� − 
 �24�

and this will persist until 
=��1+ 1
�

�. When the fiber has been
extracted from the fixed tuft, this leaves a “loose end” of
length ��1+ 1

�
�.

Note that if �= 1
2 , symmetry tells us that the fiber will pull

out from each tuft at the same rate and so F= 1
2 − 


2 when 

�1/� and the fiber will detach from both tufts at 
=1. This,
however, is an unstable situation since, as soon as � is either
greater or less than 1

2 , the fiber will remain stationary relative
to one of the tufts and F will decrease twice as fast as shown
in Fig. 9.

B. Dynamic friction law

Now f = �Y
�
 for the taut part of the fiber in the fixed tuft

and f =−�1− �Y
�


� in the moving tuft. Equations �16� and �21�
are replaced by

FIG. 8. A schematic diagram of a fiber embedded in two tufts
where one tuft moves away from the other tuft at uniform velocity.
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F�
� =	− �̇2��2 − �1� if �1 � 0,

− �̇2�2 if �1 = 0,

 �25�

and

F�
� =	− �̇3��3 − �4� if �4 � 1,

− �̇3��3 − 1� if �4 = 1,

 �26�

but relations �17� and �22� still hold. Hence, when �1�0 and
�4�1, we get the same solution �23� for �i but now

F�
� = 1
4 �� − 1�
 for 0 � 
 �

2�

�
. �27�

In the next part of the motion, �1=0 but now the fiber
continues to slip out of both tufts simultaneously. Assuming

that �̇3 and �̇4 are both positive and using �1=0 in �25� gives

�2 =
1

�
��� − 1��� − 
� + ��� − 1�
�2� − 
�� �28�

for 
�
2�
� where �3, �4, and F are determined by �15�, �22�,

and �25�.
It can easily be checked that �̇3�0 and so this motion

persists until either �2=0 or �4=1. If ��
1

1+��
, �2=0 before

�4=1 and the solution described above continues until

=��1− 1

��
� when the fiber is detached from the fixed tuft.

The variation of �i and F with 
 in this case is illustrated in
Fig. 10.

If, however, 1
1+��

���
1
2 , then the fiber becomes fully ex-

tended inside both tufts when �4=1 and 
=
1= 1
� +��1− 1

�
�

− 1
�
���−1����2− ��−1�2� and this happens before the fiber

leaves the fixed tuft.
Now there will be a third scenario to consider where �1

=0 and �4=1. The result in using �25� and �26� is

�2 =
1

2�1 − 
�
��1 − 
�2 +

1

�
�� − 1��2� − 1�� ,

�3 = �2 + 
 ,

F =
− 1

4�1 − 
�3
� �� − 1��2� − 1�
�

�2

− �1 − 
�4� , �29�

and this will be valid from 
=
1 until 
=
2=1

−���−1��1−2��

� when �2=0. The solution is illustrated in Fig.
11.

V. TUFT BREAKAGE

It is now possible to construct a simple model for tuft
breakage by simulating two tufts connected by a large num-
ber N of fibers; the fracture should occur at the structurally
weakest region of the tuft. Suppose that the two tufts are
touching initially and that a connecting fiber has a length ��
in one tuft and �1−��� in the other where � is distributed on
�0, 1� with probability density function p���. Then the force
needed to pull the tufts apart at speed U will be

F̄�t� = TsN�
0

1

F��,Ut/��p���d� , �30�

where F�� ,
� is the force calculated for the single fiber in
Sec. IV and the probability density function p��� satisfies
�0

1pd�=1. For the purposes of clarity we shall first assume
that p=1, but nonuniform distributions will be discussed in

Sec. VI. We now calculate F̄�t� for both friction laws and
compare the results with experimental measurements.

A. Constant friction law

From �23� and �24� we can see that for 0���
1
2 and 


�
1
� ,

FIG. 9. F�
� is defined by �23� and �24�, for a range of values of
� when �=2.

FIG. 10. Graphs of �i and the force F�
� when �=2 and �= 1
3 ;

where 
*=
��1+���

� .

FIG. 11. Graphs of �i and the force F�
� when �=2 and �
= 1

1+�2
+ 1

50.
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F��,
� =�
0 if 0 � � �

�


1 + �
,

�1 +
1

�
�� − 
 if

�


1 + �
� � �

�


2
,

� − 1

2

 if

�


2
� � �

1

2
,

� �31�

whereas for 1
� �
�

�+1
2�

F��,
� = �0 if 0 � � �
�


1 + �
,

�1 +
1

�
�� − 
 if

�


1 + �
� � �

1

2
. � . �32�

The function F�� ,
� will be symmetric about �= 1
2 and so

from �30� with p=1,

F̄�t�
TsN

= �
�� − 1�Ut

2l
�1 −

��� + 3�Ut

2��� + 1� � , 0 � t �
l

U�
,

�� + 1�
4�

�1 −
2�Ut

�1 + ����
2

,
l

U�
� t �

l�1 + ��
2�U

�
�33�

as illustrated in Fig. 12.

B. Dynamic friction law

The solutions for F�� ,
� given by �27�–�29� are given
below and the regions of validity are illustrated in the �� ,
�
plane in Fig. 13. Here

F1 =
� − 1

4

 for

�


2
� � �

1

2
, �34�

F2 =
�� − 1��� − 2��� − 
�

�2 −
�� − 1�3/2��2 − 4�
 + 2
2�

�2�
�2� − 
�

if
��

1 + ��

 � � � min��


2
,
�
2 − 2
 + 1

2

� , �35�

F3 =
1

4�1 − 
�3
�1 − 
�4 − �� − 1

�
�2� − 1��2�

if max�1

2
−

��1 − 
�2

2�� − 1�
,
�
2 − 2
 + 1

2

� � � �

1

2

�36�

and F is zero for other values of � in �0, 1
2

�. Once again F is
symmetric about �= 1

2 and so

F̄�
� = 2TsN�
0

1/2

F��,
�p���d� . �37�

Evaluating this integral �37� with p=1 leads to a complicated

expression for F̄ which is plotted in Fig. 14 for �=2.

FIG. 12. A plot of the force F̄ from �33� for the constant friction
law; �=2.

FIG. 13. A diagram of the regions in the �� ,
� plane where F is
given by �34�–�36� when a dynamic friction law is applied.

FIG. 14. The averaged force F̄ from �34�–�37� when �=2.
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VI. COMPARISONS WITH EXPERIMENT

The functions shown in Figs. 12 and 14 now be compared
with the experimental results of Mahmoudi which are shown
in Fig. 2. He performed a series of experiments in which a
tuft of fibers is clamped at each end and then the two clamps
are moved apart at constant speed U. In these experiments he
considered three different types of fiber and varied both the
speed U and the initial distance between the clamps d. In our
model we have assumed that only the fibers that cross the
plane midway between the two clamps can move and that all
the other fibers in the tuft will stay fixed relative to the
clamps. This assumption is more likely to hold if the distance
between the clamps is small.

The first thing to notice from the experiments is that, as
shown in Fig. 2, the magnitude of the force depends on the

velocity U. From �33� and the fact that Ts= f̂� we see imme-
diately that this is not true for the constant friction law
whereas for the dynamic friction law, where Ts=U��, we
predict that the force will depend linearly on U as shown in
Fig. 14. Although the linear dependence on velocity is only
approximately seen in Fig. 2, it is well within the bounds of
experimental error. The experiments are extremely difficult
to perform since no two tufts are exactly the same size and
the forces being measured are very small. Nevertheless the
evidence of these experiments certainly gives weight to the
idea of a velocity-dependent friction law.

We have plotted three tuft breaking forces in Fig. 15
where the interconnecting tuft fibers have lengths in either

tuft that are �i� uniformly distributed, �ii� more likely to be
distributed with the same length in either tuft, and �iii� more
likely to be distributed with a short length in one tuft and
remainder in the other. The latter of these three possible
forms for p is in better agreement with experiment. Our
model is applicable when a tuft fractures into two indepen-
dent tufts with interconnecting fibers. The fracture surface
will be the region in the tuft where there is least resistance to
the applied stress, and this will depend on the number of
contact points and the entanglement. In a region where there
are a large number of fiber midpoints, for fibers that are
uniformly entangled, the fibers are symmetrically embedded
in the tuft and would produce greater resistance than a region
where there are lots of endpoints which are only embedded
on one side of the fiber. This suggests that the fracture will
occur along a surface that is in the vicinity of more fiber
endpoints. Hence we suggest that p��� should be larger close
to 0 or 1 at the structurally weakest cross section of the tuft,
and this supports the experimental comparison in Fig. 15
�iii�.

VII. CONCLUSIONS

We considered the withdrawal of a single fiber from a
dense and entangled tuft, where the friction at contact points
with neighboring fibers were the dominant force that op-
posed motion. We introduced the concept of “effective
length,” the length over which friction forces act, and sug-

FIG. 15. F̄ plotted against extension, Ut, for U=5,10,40,50�
10−3

6 m/s and �=0.04 m using formula �37� for dynamic friction.
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gest how its evolution relates to entanglement, initial fiber
slackness and the tortuosity of withdrawal path. Two consti-
tuitive laws for dynamic friction were considered. The result-
ing withdrawal forces in Fig. 6 captured the essential quali-
tative features of the experimental data in Fig. 1, and we
were able to quantify the two model parameters.

In order to develop a model for tuft breaking, we began
by considering the behavior of a single fiber, embedded in
adjacent tufts that were being pulled apart. Then, we pre-
sented a model for tuft breaking, by considering the case of a
tuft that fractures and divides into two tufts, held together by
many interconnecting fibers. To allow for variations in the
ratio of initial fiber lengths embedded in adjacent tufts, a
probability density function was introduced, but its explicit
form would depend on the location of fracture. It can be seen
in Fig. 15 that this function affects how skewed the forces
resisting the breaking motion are over time. The results in-

dicate that fracture will occur at a cross section where the
density of fiber endpoints is highest, and so most of the in-
terconnecting fibers are not evenly embedded on either side
of the eventual fracture.
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